

Common software lifecycle

● Requirements: identify precisely what user needs from product?
● Planning: identify what needs to happen and when
● Design: based on user requirements, evaluate and choose between
possible approaches to creating a solution
● Implementation: write actual code matching the design
● Testing: determine if the implemented software actually fulfills the
user requirements
● Deployment: get the product to the user, put in operation
● Maintenance: fix and refine product as necessary for the rest of its
operational lifespan

CSCI 161 focus

● In this course we focus largely on the three middle stages:
design, implementation, and testing

● The requirements and planning portions for 161 are largely
dictated by the instructor, and no real deployment or
maintenance carried out

Design

● requirements, deadlines, some design details usually dictated
by instructor, so need to consider possible solution approaches:

– identify decomposition of problem into core subproblems
● define modules or subsystems for each subproblem, and precise

responsibilities for each: what operations/types do they provide that
can be called/used by other modules/subsytems

– based on the information we need to store/manipulate:
● pick which data structure(s) we should use (e.g. linked lists, trees,

stacks, queues, lookup tables, etc)

– for the key operations we need to perform:
● pick which algorithms we should (e.g. for insertions, searches, sorting,

removals, traversals, etc)

Design/specifications

● Document and formalize each aspect of the design,
creating specifications
– like requirements, but at the design level

– needs to be written/checked to ensure everyone understands

● Can take weeks/months for larger/team projects
● Designs are rarely perfect on first draft:

– issues encountered during implementation/testing may force us
to revisit and update the designs

Specifications in 161

● won't require specific/separate design documents in 161
– generally we're still developing small products, written solo, and

with no long term maintenance plans

– the data structures and algorithms largely dictated by instructor

● will expect that any other crucial design decisions are
noted/explained in the code comments

Implementation

● implementation is the phase in which we write our actual
C++ code based on the supplied design
– identify which components belong in which files

– implement all the data types and operations

● if design flaws are detected then we'll need to revise our
design

● if errors are found in subsequent testing then we'll need to
revise our implementation

Testing

● based on the user requirements (not the design), develop sets
of test cases that can check if every requirement has been fully
met

● each test case should have

– a specific purpose: one precise requirement that it checks

– the user input (data entered and/or input files) to be used

– notes on the expected behaviour/output for the test case

● ideally, store test case input in files, automate with small scripts

– avoids possibility of tester making mistakes when manually
running tests

Test case development

● Want to check it works correctly in “normal” use
● Also want to check it correctly deals with any error

checking as specified
● Nearly every sentence of requirements should give ideas

for more test cases
● Example “should handle values in range 0-59”:

– test cases for just in bounds (0, 59)
– test cases for just out of bounds (-1, 60)

– at least one test case somewhere inside the range (1-58)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

