

Makefiles

● a program can be made up of many different .h and .cpp
files
● we want a way to ensure that, after editing something, all the
affected files are updated correctly
● we don’t want to needlessly recompile files that aren’t
affected
● makefiles give us a way to identify what needs to be
recompiled based on which files have been edited, and to
specify how to recompile them

Makefile concept

● Each item that can be rebuilt is called a target (e.g. each executable
and each .o file)

● For each target, we provide a list of file dependencies, if any of these
files have changed then the file needs to be rebuilt

● For each target, we provide a rule specifying exactly how to rebuild it

● Makefile data is put in a file named makefile, by default one makefile
per directory (with targets for everything in the directory)

● To rebuild a target from the command line, we type

make targetname

Sample makefile

● Suppose we have stack.h and stack.cpp to define and
implement a stack data type, and a program myprog.cpp with
header file myprog.h, which utilize the stack code

sample makefile (note: the # is used for comments)
myprogx: myprog.o stack.o

g++ myprog.o stack.o -o myprogx

myprog.o: myprog.cpp myprog.h stack.h
g++ -c myprog.cpp -o myprog.o

stack.o: stack.cpp stack.h
g++ -c stack.cpp -o stack.o

Makefiles and tab syntax

● Note that the name of the target begins a line, and the first
character on the next line (the line with the rebuild rule)
MUST be a tab ... anything else (even spaces instead of a
tab) will result in make yelling at you when it runs

● If your editor automatically substitutes spaces for tabs then
you’ll need to turn that off while editing makefiles

Using the makefile

● We could manually specify what to rebuild from the
command line, e.g. “make stack.o”, but usually we specify
the executable and let make figure out the details, e.g.
“make myprogx”

● If we simply type “make” then it assumes you mean the top
target in the makefile (i.e. myprogx in this case)

How the makefile works

● For current target, make goes throughlist of dependencies:
● if any have their own rules in the makefile it treats them as

intermediate targets, processing them then coming back

● After processing all of target’s dependencies, if any of the
dependency files have changed more recently than the target
then it rebuilds target using the associated rule

● Make uses the file modification date to determine what is most
recent (compare target date/time to dependency date/time)

● If a target doesn’t exist (e.g. if this is first time compiling) then it
automatically builds it

Using our stack/myprog example

● Suppose we had compiled everything for myprogx, then we edit
myprog.cpp and run “make progx” to rebuild

● Make looks at progx dependencies, myprog.o and stack.o, sees
both have rules, goes off to check them

● Checks stack.o rule, looks at its dependencies, stack.cpp and
stack.h – neither of them have changed

● Checks myprog.o rule, looks at its dependencies, myprog.cpp
and myprog.h, myprog.cpp has changed, runs g++ -c myprog.cpp -o
myprog.o

● Now back at myprogx, sees a dependency has changed, so
runs g++ myprog.o stack.o -o myprogx

Phony targets

● If we have actions we want to include in a makefile that
don’t involve actually building anything, we can use a
“phony” target to run them

● Suppose I want to use “make clean” to remove a set of .o
files and executables, I could do the following:

.PHONY: clean
clean:

rm -f stack.o myprog.o myprogx

“All” as a first target in file

● Suppose we have multiple executables in our directory, so
our makefile has rules for each

● We’d like to be able to bring them all up to date by simply
typing “make”

● We could add a target at the top of the file that has each of
them as a dependency, e.g. all: progx testerx whateverx

● Since make uses top target by default, and checks rules
for each dependency, this does exactly what we want

We’ve only scratched the surface

● There is much much much more functionality with make,
and ways we can create far more flexible rules

● Other features of make, and other programs, exist to
generate makefiles automatically from the heirarchy of
#includes

● IDEs essentially do all this “behind the scenes” for you in
order to automate compilation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

