

Multiple inheritance

● a class can be derived from multiple other classes
● it inherits all the fields and methods for each
● need to resolve name clashes
● need to address the “diamond problem”

parent

child1 child2

grandchild

by default, grandchild inherits
everthing from parent twice:
 once through child1,
 once through child2

Declaration syntax

● specify a comma separated list of base classes, giving the
inheritance mode for each (public, protected, private)

class left {
 ...
}

class right {
 ...
}

class bottom: public left, public right {
}

left right

bottom

// constructor order: left, right, bottom (based on derivation order in bottom's declaration)
// destructor order: bottom, right, left

Inherited fields/methods

● if all names are unique, the derived class can simply refer to the
inherited fields/methods by name

● in the case of name clashes (ancestor classes have
fields/methods of the same name):

– access inherited method by classname::methodname syntax
● if an inherited method has a different parameter list than in the

derived class (e.g. print() vs print(int x)) the inherited one is said
to be hidden

– is only assessible using classname::methodname

The diamond problem

● bottom gets all top's fields and methods twice, as left::___ and
right::___
● thus two versions of each data field, possibly with different data over
time
● this is usually not the behaviour we want ...

top

left right

bottom

suppose top class has a field X,

then bottom gets a left::X and also a
right::X

Constructors and diamond
● default constructors used unless otherwise specified

● bottom can't specify top constructor, needs to be done by left/right

● shown below with initializer lists
class top {
 protected:
 int xVal;
 public:
 top(int x): xVal(x) { }
};

class left: public top {
 protected:
 float yVal;
 public:
 left(int i, float y): top(i), yVal(y) { }
};

class right: public top {
 protected:
 string wVal;
 public:
 left(int i, string w): top(i), wVal(w) { }
};

class bottom: public left, public right {
 protected:
 char zVal;
 public:
 bottom(char z, int j, float k, string s):
 left(j, k), right(a, b), zVal(z) { }
};

Virtual base classes

● can derive virtually, essentially telling the compiler that we wish
to share any inherited ancestors

● means there will only be a single top inherited by bottom

class left: virtual public top {
...
};

class right: virtual public top {
...
};

class bottom: virtual public left, virtual public right {
...
};

now bottom can refer to
top's constructors,
fields, and methods
without ambiguity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

