

Queues: ADT and implementations

● queues store a set of data values, maintaining the order in which
they were entered
● new values are inserted at the back
● values are removed from the front
● generally used when we want to process items in the order they
arrived
● referred to as FIFO, first in first out
● implementations often very similar to linked list
● circular buffers are another common implementation

Queue ADT

● each element being stored might consist of multiple fields
(like with lists)

● operations to insert, typically called enqueue
● operations to remove, typically called dequeue
● possible additional operations to print the queue, check the

size, find/remove something that's in the queue

Common uses

● generally used when we're processing things in the order
they arrive, e.g.
– handling sales: might use a queue of purchase orders/requests

– handling jobs sent to a printer: might use queue of the print
requests

● common variation is the priority queue, in which jobs of
higher priority are done before jobs of lower priority
– jobs of equal priority are handled in traditional queue order

Implementation: list style

● can use our linked list code almost verbatim
● maintain pointers to front and back
● restrictions

– we always insert at the back

– we always remove from the front

Implementation: array style

● can implement a queue using an array
● if we're removing from front, then either

– we have to shuffle the array elements over one position after each
remove (to keep the front in array position 0)

– or the position of front changes over time, e.g.
● original front element in array position 0
● after one remove the front is the element in position 1
● after two removes it's the one in position 2, etc

● latter approach leads to the “circular buffer” concept

– csci.viu.ca/~wesselsd/courses/csci161/slides/circularBuffer.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

