

Static vs dynamic binding, keywords

● with inheritance we might have multiple methods with the same
name declared at different points amongst the base and derived
classes
● which one gets called in a given situation depends on how we
make the call and how the inheritance has been set up
● need to introduce static vs dynamic binding
● will use a variety of keywords: virtual, override, final
● tomorrow we'll get deeper into dynamic binding, pure virtual
methods, and abstract base classes

Assigning ancestors/descendants

● suppose child is derived from parent, and have variables
child C and parent P

● P = C; treated as valid, knows how to fill P's fields, ignores
the extras

● C = P; treated as invalid (unless we overload = in child
class) since it doesn't know how to initialize some of C

Passing child to parent* as param

● suppose function expects a parameter that is a pointer to
the parent class

● we can still pass a pointer to a child class derived from
parent, and call methods inside the function

● with our syntax so far, only the parent methods can get
called in the function (since it's a pointer to a parent)

● called static binding: the compiler determines the method
type based solely on what kind of object/pointer the
method is called through

static binding example

class parent {
 protected:
 int pVal;
 public:
 parent(int v = -1) { pVal = v; }
 void print() {
 cout << “pVal is “ << pVal << endl;
 }
};
class child: public parent {
 protected:
 int cVal;
 public:
 parent(int v = -2) { cVal = v; }
 void print() {
 cout << “cVal,pVal are “;
 cout << cVal << “,” << pVal << endl;
 }
};

void show(parent *p) {
 p->print();
}

int main() {
 parent x(1);
 child y(2);
}

// both times it calls the parent print method
// since p->print() is calling through parent ptr

// first call displays pVal is 1
// second call displays pVal is -1

// (when child is declared it uses default
// parent constructor)

Static vs dynamic binding

● suppose we wanted the second call to actually run the
child's print:

● i.e. pick the method based on the kind of object passed,
not simply the parameter type, with desired effect:
– show(y); // want it to run y.child::print() since y is child

– show(x); // want it to run x.parent::print() since x is parent

● called dynamic binding
– static: specific method is chosen at compile time

– dynamic: specific method not chosen until call actually takes
place during execution, and is based on what was passed

Keywords: virtual, override, final

● we can preface method declarations with the virtual keyword

– indicates they're meant to be overridden by descendants and
dynamically bound

– virtual void print(); // inside class declaration

● when overriding a method we can explicitly add override keyword

– triggers a compile-time error if we accidentally hide an inherited method

– virtual void print() override; // inside class declaration

● we can add keyword final to a method to indicate this cannot be
overriden

– virtual void print() final; // inside class declaration

Hiding inherited methods

● suppose we have following scenario:
– parent declares print method with no params
– child declares print method with one param
– main tries to call print() on a child object

● call fails: the child's declared print hides inherited prints
with different parameter profiles

● we could still call the parent's print explicitly, e.g.
c.parent::print()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

