

A team git process

● teams of 3-5 students, each team working on their own project

● each team has shared central git repo with two core branches:
master (the “production” version) and dev (development)

 [based on a team git repo set up by our tech wizard,

 with the permission of the course instructor]

● instructor will evaluate based on what's in those two branches on
the team's shared repo
● need a process to coordinate pulling/pushing of updates (don't
want one member's push to wipe out changes made by others)

The initial setup

● as with our other labs using git:
– instructor sets up a project repo on csci git server
– team forks that to set up their shared repo on git server
– team members clone, pull, push as discussed below

● strongly recommend each team:
– pick one trusted team member (their git lead) to handle the

initial setup and all subsequent access to the master branch

– other team members only pull from/push to the dev branch,
following process discussed in next few slides

Setup steps by team git lead

● each team will be given designated team identifier, e.g. teama below

● team's git lead forks, clones, sets up dev branch:

– cd csci265

– ssh csci fork csci265/project csci265/teama/project

– git clone csci:csci265/teama/project
● edit master readme, do git add/commit

– git branch dev

– git checkout dev
● edit dev readme, do git add/commit

– git checkout master

– git push origin --all

● instructor can pull team's master and dev from shared repo to check setup is ok

Team member's work cycle

● each team member likely to be working on different components or
features

● will be pushing their changes to dev, but also need to pull regularly
from dev to get changes pushed by other team members

● each time we pull others' changes from dev there may be conflicts
with our own local changes, will need to resolve those

● want to be careful we don't push (known) broken code to shared dev,
since that breaks dev content for everyone else too

● potential scenarios where team members can wipe out each other's
pushes if not coordinated (see next slide)

Conflicting pushes:

● Scenario: two different team members pull same code from dev, merge it
with their own (different) local versions, both make more changes and push

● Result: whoever pushes last “wins”, other's changes may be lost

● Two steps to avoid this:

– pull again just before you push: catches changes others just pushed

– have a fixed location where you announce your intention to push (e.g. a
team discord)

● ALWAYS check and post here before pushing
● if someone else is in the middle of a push: wait for them to finish,

then pull their changes, then do your push

Sample team member use

● clone dev into a local repo to use for the feature or component you're going
to be responsible for, pick a branch name for your feature

– git clone csci:csci265/teama/project --branch dev

– git branch yourbranchname

– git checkout yourbranchname

● do your work, add/commit regularly until you're results are safe to share, pull
the shared dev in case anyone has pushed since you last pulled

– git pull origin dev

– fix any issues then add/commit
● check your team announcements about pushes, and if no further pull is

required push your update (next slide)

The push to shared dev ...

● go back to the dev branch

– git checkout dev

● merge the changes from our branch into our dev (--no-ff helps in
the commit record keeping)

– git merge --no-ff yourbranchname
● push back to the shared dev

– git push origin dev

● done!

Team git lead updating master

● done once the team agrees that the current version of dev is stable
(compiles cleanly, passes current test set etc)

● git lead checks out and updates their local dev:

– git checkout dev

– git pull origin dev

● git lead checks out their local master, updates from their dev

– git checkout master

– git merge --no-ff dev

● git lead pushes updates to the shared repo

– git push origin --all

Cautionary notes for the git lead

● strongly recommend git lead keeps a separate repo for the
master/dev updates
– this needs to be distinct from any repo(s) they use for their own

contributions to the project

● git lead must always always always be sure they're
working in the right repo!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

