

Blocks

● What is syntax (delimiters)
● Where can blocks be used
● Scope and blocks
● Do blocks return a value (use in expressions)
● Entry point(s) to blocks
● Exit point(s) from blocks

Block syntax and use

● Typically need start/stop delimiters, e.g. { }, begin end,
indentation level, etc. Again, one of the most recognizable
aspects of language syntax

● Can blocks be used anywhere you could use a single
statement, or are blocks implicitly used as parts of more
complex control structures (loops, if statements, etc)?

● Do blocks have a return value, i.e. can you use them in an
expression, and how do they return a value (syntax)?

Block scope

● Does each block have its own scope?
● If so, what are the nesting rules (e.g. lexical or dynamic,

how are overlapping scope refereces handled)?
● Are the rules consistent across all types of block (e.g. the

same in if statements as loops, and as in switch
statements, etc)?

Exit point(s)

● At what points can you leave a block? E.g. return
statements, break statements, after executing last
statement in block, etc)

● Is there a last/final mechanism to specify actions that are
always applied when leaving the block, regardless of
which exit point was used?

Entry points

● Most loops have a unique first instruction that is executed
upon entering loop (typically the “top” instruction in the
loop)

● Is it possible to have multiple entry points to a loop, a
variety of places you could jump in to and start at? If so,
what happens if some of those entry points “skip”
instructions like variable declarations/initializations (see C
switch example)?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

