

Hashes, unions, sets
● Hashes, or associative arrays, act like a lookup table –
associating values with a set of unique keys, and are implemented
as a built in part of some languages
● Languages may restrict the types of values that can be used for
keys and/or as values
● Typical operations are adding/modifying/removinig key value
pairs, listing or iterating through keys or values
● Implementations use typical searchable data types (btrees, hash
tables, etc) indexed on keys and possibly with secondary index on
values

unions

● For statically typed languages, unions provide a means of grouping together data types,
e.g. we might create a weekday type in which values may be either a string (e.g.
“Friday” or an integer value corresponding to that day (e.g. 5)

● They often use a structure like syntax to associate value or field names with data types,
e.g.

Union Weekday { string DayAsStr; int DayAsInt; }

WeekDay D;

D.DayAsInt = 6;
● Allocated storage must be large enough for the largest storable type
● Automated type checking may or may not be supported, e.g. if we assign 6 to D.DayAsInt and

then try to access D.DayAsStr, what happens?

Sets

● Some languages will provide sets as built in types, others
may provide them through libraries or modules

● Implementation may be as a bit vector (in/not-in a set of
known values) or as a form of list (all items in the list are
part of the set)

● Typical set operations are generally supported (union,
intersection, complement (for bit-vector representations),
etc.

	Slide 1
	Slide 2
	Slide 3

