

IR trees/graphs

● Various possible tree/graph intermediate representations:
● Parse tree: directly based on grammar of the source language
● Syntax tree: abstract from parse tree (less language dependent)
● Dependency graph: show heirarchy of declared/defined items,
and which ones depend on which others
● Control flow graphs: divide code into uninterrupted blocks of
code, with directed edges indicating possible flow between them
● Call graphs: nodes for procedures, directed edges indicate calls

Parse trees vs syntax trees

● Attempt to abstract data and operations away from
language specific grammar rules

+

- z

x 13
add

op
val

op
add

exp

add

val

var
+

z

int

13

val

var
x

-

Parse tree

Abstract idea

Directed acyclic syntax graphs

● Reduce size by identifying/reusing common subtrees
● (a-(a/(b-c))) + ((b-c)*d)

+

- *

/

-

b c

a

d

Syntax DAGs

● Need an effective way to recognize when common
subtrees exist, ideally asap during construction

● Introduces many possible language-independent
optimizations, e.g.
– in expressions: store result of subtree in a temp variable rather

than recomputing

– if subtree represents a block of statements then replace with
callable function)

Tree construction from grammar

● Suppose we build our tree with two kinds of nodes:
– leaf: holds the tokens in our source grammar
– node: internal node, corresponding to nonterminals

● For each grammar rule, we define a rule on how to build
the appropriate tree node/leaf

● For top-down derivation, we start with a node for our top
level nonterminal, and on each rule application we apply
the appropriate construction

Example: construction rules

expr-->addx

addx--> addx aop multx

addx --> multx

multx --> multx mop valx

multx --> valx

valx --> VAR | NUM

valx --> '(' expr ')'

aop --> '+' | '-'

mop --> '*' | '/'

expr.node = addx.node

addx.node = new node(aop.node, addx.node, multx.node)

addx.node = multx.node

multx.node = new node(mop.node, multx.node, valx.node)

multx.node = valx.node

valx.node = new leaf (VAR, VAR.txt)
valx.node = new leaf (NUM, NUM.val)

valx.node = new node('(', expr.node, ')')
aop.node = new leaf('+')

mop.node = new leaf('/')
mop.node = new leaf('*')
aop.node = new leaf('-')

Array-of-records implementation

● Need a way to represent our leaf/node collection, e.g.
– leaf record type
– node record type
– keep an array of records (and counter)

● Each leaf/node thus has a unique index value (array pos)
● Cross references between nodes can use the index (giving

small storage, fast lookups)
● Often referred to as value-number method, each node has

unique associated index number

Value-number example

index Node/leaf data1 data2

0 (leaf x) symtable ptr for x

1 (leaf i) symtable ptr for i

2 (leaf 10) literal 10

3 (node *) 0 (index of node x) 2 (index of node 10)

4 (node +) 1 (index of node i) 3 (index of node *)

5 (node =) 1 (index of node i) 4 (index of node +)

i = i + x * 10
i.e.
i = (i + (x * 10))

Searching problem:

● As we're building the array, we need to search current
array content to find operand indices, e.g. to fill in fields for
 x * 10 we need to find indices for nodex x and 10

● Currently that means a linear search: O(n)
● Could store the nodes as a binary search tree instead of

an array, so O(log(n))
● Could store the nodes in hash table: collection of buckets,

with hash function mapping the operands (e.g. *, X, 10) to
a bucket, then just linear search the bucket if not empty

Using duplicate subtrees (DAG)

● When building an entry, and have searched for the correct operand
indices, look at fields for new entry, check if there's already a
matching entry

● e.g. Suppose we have a new entry using x*10 again, we look for a
(node *) with data fields 0 and 2, and find index 3 already provides it

index Node/leaf data1 data2

0 (leaf x) symtable ptr for x

1 (leaf i) symtable ptr for i

2 (leaf 10) literal 10

3 (node *) 0 (index of node x) 2 (index of node 10)

4 (node +) 1 (index of node i) 3 (index of node *)

5 (node =) 1 (index of node i) 4 (index of node +)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

