IR modeling, application issues

Variety of issues we'll consider briefly:

* Modeling control: combining linear codes and control flow graphs
« Examining impact of variable naming choices/methods

« Examining impact of assumed memory models

e Examining use of symbol tables as part of our IR (and
alternatives to use of symbol tables)




Modeling flow of control

« Typical program needs to support iteration, selection,
subroutines, etc: blocks of sequential statements with
(possibly conditional) jumps into/out of them

 One idea is to divide code into blocks of linear code, where
each block has exactly one entry point (the first statement)
and exactly one exit point (the last statement)

 Then use a control flow graph where each node
corresponds to a block, and each directed edge
corresponds to a potential jump/transition from the end of
one block to the start of another



Finding entry/exit points in blocks

« Call the entry point, first statement in block, the leader
« Block ends as soon as a jump/branch statement reached

 Make two passes through linear code to identify blocks:

- First pass we identify all the leaders (each statement
immediately following a code label)

- Second pass we identify block ending statements by going
through each statement, we are on an ending statement when
the next statement is the leader of a block

* Each sequence of statements from a leader to the
subsequent end point becomes one block



Naming choices

e Base our names on original source (shows clear
relationship to source) vs create new ones (increasing
possibility of identifying optimizations/rewrites)

« Suppose we move all variables into temp variables

 We can safely reuse those temp variables whenever the
source code used the original variable

- Keeps number of temp variables low, but IR code closely
mimics original source

 Alternative is to generate new temp variable for each
iInternal node: more variables, but more independence



Example: naming choices

// original
w=x%y
X=W+2Z
y=XxX-y
z=w/y

I/l keeping same name structure
t1=w
t2=x
t3=y

t4 =2
t1=12* 13
t2=11+1t4
t3 =12 -13
t4 =t1/13
w =1

X =12

y =13
z=14

/I new names for internal nodes
t1=w

t2 =x
t3=y
t4=2

t5 =12 * 3
t6=t5 +t4
t7 =16 — t3
t8 =t5/17
w =15

X =16

y =17

z =18



Choice of memory models

Do we assume our basic operations work strictly off
registers, or directly with memory?

» Register-to-register model assumes we keep as much
data as possible in registers, for as long as possible

 Memory-to-memory model assumes we leave things in
memory as much as possible/as long as possible



Register-to-register model

 |gnores actual size of physical register sets in target,
assigns each item in a block a virtual register

» Assumes that, if possible, each virtual register will be
mapped to a physical register

* (Assumes that if there are insufficient physical registers
then most-used virtual registers will be mapped to
physical, remainder will spill to memory, to be loaded into
temp register when needed)

e Simple, provides good opportunities for later optimization



Memory-to-memory model

« Assumes values kept in memory until needed
* Move to register just before needed

 |If value changes then copy back to memory as soon as
possible (once changes complete)

« Uses fewer registers

* Might be chosen model if our IR operations assume a
memory-to-memory to give reduced num of IR op types



Symbol tables in IR

« Often want to look up information about a variable,
constant, function, etc, at point in the IR where the
declaration information isn't right at hand

 Can either search the IR to find the relevant declaration, or
maintain a separate data structure (e.g. Symbol table) to
allow cross-referencing/look-ups

« Often refer to “the symbol table”, but in fact is often
iImplemented as multiple separate tables for different types
of entity (variables, functions, labels, etc)



Types of data stored

» Variables/constants: name, scope, type, storage type/form,
memory address

Functions: name, return type, parameter types/number

Labels: name, address, scope

Arrays: as per variables, but also dimensions

Structures: field types, names, sizes



Implementation of symbol table

« Array of records is simple, but O(n) searching
* Binary search tree gives O(log n)

« Hash table is common implementation approach, with
suitable hash function and table size chosen to limit
probable size of individual buckets



Handling of nested scopes

* |n labs we considered use of unique identifiers for each
scope, and maintaining a stack of active scopes: search
scopes from top-of-stack down, looking for most recent

* An alternative is to generate a unique symbol table for
each scope, with a linked-list of active tables

« Search current symbol table, then follow link to the one for
the enclosing scope and search that, etc until reach global
scope and find/fail



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

