

IR modeling, application issues

Variety of issues we'll consider briefly:
● Modeling control: combining linear codes and control flow graphs
● Examining impact of variable naming choices/methods
● Examining impact of assumed memory models
● Examining use of symbol tables as part of our IR (and
alternatives to use of symbol tables)

Modeling flow of control

● Typical program needs to support iteration, selection,
subroutines, etc: blocks of sequential statements with
(possibly conditional) jumps into/out of them

● One idea is to divide code into blocks of linear code, where
each block has exactly one entry point (the first statement)
and exactly one exit point (the last statement)

● Then use a control flow graph where each node
corresponds to a block, and each directed edge
corresponds to a potential jump/transition from the end of
one block to the start of another

Finding entry/exit points in blocks

● Call the entry point, first statement in block, the leader
● Block ends as soon as a jump/branch statement reached
● Make two passes through linear code to identify blocks:

– First pass we identify all the leaders (each statement
immediately following a code label)

– Second pass we identify block ending statements by going
through each statement, we are on an ending statement when
the next statement is the leader of a block

● Each sequence of statements from a leader to the
subsequent end point becomes one block

Naming choices

● Base our names on original source (shows clear
relationship to source) vs create new ones (increasing
possibility of identifying optimizations/rewrites)

● Suppose we move all variables into temp variables
● We can safely reuse those temp variables whenever the

source code used the original variable
– Keeps number of temp variables low, but IR code closely

mimics original source

● Alternative is to generate new temp variable for each
internal node: more variables, but more independence

Example: naming choices

// original
w = x * y
x = w + z
y = x – y
z = w / y

// keeping same name structure
t1 = w
t2 = x
t3 = y
t4 = z
t1 = t2 * t3
t2 = t1 + t4
t3 = t2 – t3
t4 = t1 / t3
w = t1
x = t2
y = t3
z = t4

// new names for internal nodes
t1 = w
t2 = x
t3 = y
t4 = z
t5 = t2 * t3
t6 = t5 + t4
t7 = t6 – t3
t8 = t5 / t7
w = t5
x = t6
y = t7
z = t8

Choice of memory models

● Do we assume our basic operations work strictly off
registers, or directly with memory?

● Register-to-register model assumes we keep as much
data as possible in registers, for as long as possible

● Memory-to-memory model assumes we leave things in
memory as much as possible/as long as possible

Register-to-register model

● Ignores actual size of physical register sets in target,
assigns each item in a block a virtual register

● Assumes that, if possible, each virtual register will be
mapped to a physical register

● (Assumes that if there are insufficient physical registers
then most-used virtual registers will be mapped to
physical, remainder will spill to memory, to be loaded into
temp register when needed)

● Simple, provides good opportunities for later optimization

Memory-to-memory model

● Assumes values kept in memory until needed
● Move to register just before needed
● If value changes then copy back to memory as soon as

possible (once changes complete)
● Uses fewer registers
● Might be chosen model if our IR operations assume a

memory-to-memory to give reduced num of IR op types

Symbol tables in IR

● Often want to look up information about a variable,
constant, function, etc, at point in the IR where the
declaration information isn't right at hand

● Can either search the IR to find the relevant declaration, or
maintain a separate data structure (e.g. Symbol table) to
allow cross-referencing/look-ups

● Often refer to “the symbol table”, but in fact is often
implemented as multiple separate tables for different types
of entity (variables, functions, labels, etc)

Types of data stored

● Variables/constants: name, scope, type, storage type/form,
memory address

● Functions: name, return type, parameter types/number
● Labels: name, address, scope
● Arrays: as per variables, but also dimensions
● Structures: field types, names, sizes

Implementation of symbol table

● Array of records is simple, but O(n) searching
● Binary search tree gives O(log n)
● Hash table is common implementation approach, with

suitable hash function and table size chosen to limit
probable size of individual buckets

Handling of nested scopes

● In labs we considered use of unique identifiers for each
scope, and maintaining a stack of active scopes: search
scopes from top-of-stack down, looking for most recent

● An alternative is to generate a unique symbol table for
each scope, with a linked-list of active tables

● Search current symbol table, then follow link to the one for
the enclosing scope and search that, etc until reach global
scope and find/fail

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

