
  

Activation records

● represent the runtime block of memory associated with a specific 
function invocation (i.e. each individual call)
● compiler likely needs to:

● determine layout of the AR, size of each portion for the 
current call, and offsets to each element within

●  generate function code to set up, use, and clean up 
the ARs

●  allocate AR segments for return value, parameters, 
return address, saved registers, local variables

●  include mechanism to access scopes of lexical 
ancestors



  

AR chains

● callee AR likely includes a reference to that of the caller
● for nested declarations may include ref to AR of lexical parent
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h() Example:
 - f is defined inside h
 - f is called from g



  

Accessing ancestor AR

● suppose function h includes definition of variable x, at 
offset of 8 from start of h's local variable space

● suppose function f is defined inside definition of function h 
(i.e. nested function definitions permitted)

● if function f refers to x, compiler inserts pair <n,offset> 
where n is the number of lexical ancestors to traverse, e.g. 
– <1,8> would mean look in the AR of f's lexical parent at offset 8

– <0,4> would mean look in f's AR at offset 0



  

Optimizing ancestor access

● Maintain a global array of AR pointers
– arr[0] is pointer to current AR
– Arr[1] is pointer to lexical parent's AR
– Arr[2] is pointer to their lexical parent's AR

– etc

● Update the array contents on each function call/return
● On reference to <n,offset> simply look up arr[n] instead of 

following AR pointer chain



  

AR and the local code block

● abstraction might separate the allocation/initialization of 
local variables from the execution code statements

     int f(int x) {

        int y = 3;

        y = y + x;

        return y;

     }

● might initialize y to 3 as part of setting up the AR, in which 
case the first executable statement in the code block 
would become the “y = y + x;”



  

Storing the ARs

● stack-based approach:
– caller's AR is on stack immediately below callee's AR
– assumes callee exits before caller resumes, not possible for 

callee to outlive caller

● heap-based approach:
– actually maintain linked list of AR's, allocated in heap

– supports concurrency, where caller and callee can continue/end 
independently



  

Optimizations

● leaf subroutines: subroutines that don't call any others
– don't actually need to be on stack
– can keep a static AR someplace just for leaf subroutines

● Fixed call sequences: an invariant sequence of calls
– e.g. X always calls Y which always calls Z, and Z is a leaf

– Possible optimization by combining X,Y,Z into a single AR
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