

Attribute grammars

● Attribute grammars act as an extension of context free grammars
● Each token and each nonterminal in the grammar has an
associated set of attributes
● For each CFG rule in our grammar, we add a set of attribute
rules: these identify two things

● the combinations of valid attributes for the tokens on the RHS of
the rule

● how to compute the resulting attributes for the nonterminal on the
LHS of the rule

Inherited vs synthesized attributes

● Considering the parse tree for a particular derivation, and
looking at any given token or non-terminal:
– its inherited attributes are those designated top down, from its

parent/ancestors in the parse tree
– its synthesized attributes are those computed bottom up from

its children in the parse tree

● We've seen an ad hoc formulation of the attribute grammar
rules in our use of yacc for context-sensitive checking

When are attribute rules applied?

● Dynamic methods:
– assuming our compilation approach is based on the

computation of a parse tree with attributes, this approach
assumes we apply the attribute rules for a non-terminal after all
its child nodes have been evaluated

● Rule-based methods:
– encode a specific sequence to apply the various attribute rules,

e.g. Once child #1 has been evaluated, apply rule #2 to each of
the other children in sequence, then once they are all complete
apply rule #3 to ... etc etc ...

Complexity of the rules

● Application of the rules in an automated fashion can
become complex/slow
– Consider a system with complex types and structural

equivalence, where A,B,C are composite types
– A := B + C might mean deep type structural type checking on

B/C, then again on the result and A

● multipass systems (e.g. for declare anywhere), or the use
of forward declarations can also lead to complex cross-
referencing across portions of the annotated parse tree

Cyclic attribute grammars

● care must be taken to avoid developing attribute grammars
with cyclic/mutually recursive dependencies, or the
compiler can be locked in a loop trying to process the rules

● alternatively, some form of cycle-breaking evaluation
method can be used to prevent the compiler from getting
stuck, even if a cyclic set of dependencies is encountered

Parse tree availability and storage

● Implicitly or explicitly, these techniques rely on the
generation of the parse tree to annotate: storing at least
the subtrees needed to evaluate the current set of attribute
rules

● For a large complex program, this can result in substantial
storage needs

Autogenerated vs ad hoc

● You may have noticed that lex/yacc autogenerate the
scanner and parser for us, but expect the compiler writer
to create their own code to carry out context-sensitive
checking

● Very challenging to implement both an effective attribute
grammar and an efficient compiler-generator that applies
the grammar

● The antlr/bison/yacc approach is widely used: automate
the scanning and parsing, leave the rest for the devs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

