

Bottom-up parsing

● Bottom-up parsing works from the input token sequence “up” the
parse tree towards the root
● At each step it identifies some sequence of tokens/nonterminals
that are the RHS of a rule in the grammar, and applies the rule to
work up to a new non-terminal
● The current working sequence of tokens/nonterminals is referred
to as the 'frontier', and the rule we select to apply as a 'handle'

Example

<INT> <VAR,foo> <EQ,=> <MINUS,-> <NUM,27>

stmt --> type VAR EQ expr
expr --> MINUS val | val
val --> NUM | VAR
type --> INT | REAL

Input sequence “int foo = - 27”
Starting frontier, just showing token types:
 INT VAR EQ MINUS NUM

<INT> <VAR,foo> <EQ,=> <MINUS,-> <NUM,27>

Arbitrarily try handle type-->INT
gives new frontier: type VAR EQ MINUS NUM

type

Example: continued

<INT> <VAR,foo> <EQ,=> <MINUS,-> <NUM,27>

stmt --> type VAR EQ expr
expr --> MINUS val | val
val --> NUM | VAR
type --> INT | REAL

type

Next try handle: val-->NUM
..gives frontier type VAR EQ MINUS NUM
...then expr-->MINUS val gives frontier type VAR EQ expr
....finally stmt --> type VAR EQ expr takes us to root
Note order 2,3,1,4 would have worked too...

val

expr

stmt

1 2

3

4

Handles, building parse tree

● Selecting the correct handle is obviously the crucial point
● Will use <A-->X,k> to refer to the handle whose grammar

rule is A-->X, where X represents sequence X1,X2,...Xn of
tokens/nonterminals, and k is position of the right end of X

● Will refer to replacement action as a reduction (it reduces
number of symbols in target string unless n==1)

● The parser would create a new node for A, and link it as
parent to existing nodes X1..Xn

Derivations vs bottom-up parse

● A derivation sequence might look like

 start --> X Y Z --> foo Y Z --> foo and Z --> foo and blah
● The desired bottom-up handle sequence would be its

reverse, i.e.

 foo and blah --> foo and Z --> foo Y Z --> X Y Z --> start
● LR(1) parsers will scan from left to right and build a

rightmost derivation, using one symbol of lookahead
● (it actually builds the rightmost derivation in reverse)

Example: grammar

Similar to grammar considered in scanner section

prog --> BEGIN list END

list --> list stmt | stmt

stmt --> VAR EQ assign TERM

stmt --> PRINT VAR TERM

stmt --> INT VAR TERM

assign --> VAR EQ assign | INUM | RNUM

Sample program

● Sample program and token types (making assumptions
about the regex's for the various token types)

 begin

 int x ;

 int y ;

 x = y = 10 ;

 print x ;

 end

TOKEN SEQUENCE
 BEGIN
 INT VAR TERM
 INT VAR TERM
 VAR EQ VAR EQ INUM TERM
 PRINT VAR TERM
 END

Derivation sequence

read BEGIN INT VAR TERM, replace with stmt

now: BEGIN stmt, replace with list

now: BEGIN list

read INT VAR TERM, replace with stmt

now: BEGIN list stmt, replace with list

now: BEGIN list

read VAR EQ VAR EQ INUM, replace with assign

now: BEGIN list VAR EQ VAR EQ ASSIGN, replace w/assign

Derivation example continued

now: BEGIN list VAR EQ assign TERM, replace with stmt

now: BEGIN list stmt, replace with list

read PRINT VAR TERM, replace with stmt

now: BEGIN list stmt, replace with list

now BEGIN list

read END, replace BEGIN list END with prog

now at end of input, only item left is top-level nonterminal
(prog), so accept

Stack-based algorithm

● initialize stack to empty, start at beginning of input
● while stack not empty or still input to read:

– if sequence of items at top of stack match the RHS of a
grammar rule then pop those items and push the nonterminal
for that grammar rule (e.g. A-->XY and Y is top of stack and X is
immediately below Y: pop X and Y, push A)

– else if out of input and stack contains anything but the root
nonterminal then break

– else read next word of input and push on stack

● accept iff stack contains only the root nonterminal

State-based stack algorithms

● The prev algorithm assumes we look “down” through the
stack at each step, to see if we have a reduce match

● Alternatively, we can also record a current state, which
keeps track of what kind of matchable things we've
currently got on the top of the stack

● e.g. For a rule A --> X Y Z we might have states for (i)
haven't seen any of them yet, (ii) have seen a possible X,
(iii) have seen possible X Y, (iv) have seen possible X Y Z

● Our shift/reduce decision would then be based on the
current state and the next word of input (i.e. LR(1))

Coding approaches

● As with other scanners/parsers, can take either a direct
coded approach or a lookup table approach

● Similar limitations: memory use by table, memory use by
code, speed of lookup vs speed of code, need to generate
either the table or the code

● Typically when we apply a reduction we also want to
record (with it) what kind of reduction was applied: either
explicitly building a parse tree as we go, or keeping a
derivation history so the parse tree can be produced later

Limitations

● Not all grammars are LR(k) for any fixed k:
– Sometimes you cannot tell whether to push (aka shift) or reduce
– Sometimes you cannot tell which is the correct grammar rule to

reduce

● Heuristics sometimes added for handling these decisions
(e.g. prioritize grammar rules in order A B C)

● LR(k) and LR(1) have equivalent power in terms of the
languages they recognize, but LR(k) may be able to do so
with simpler grammars for a given language

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

