

Code shape, code generation

● generally a huge range of possibilities for representing the
original program as code in the target language
● tradeoffs: runtime speed, memory use, number of registers used,
amount of energy used during execution...
● code shape: term used to cover the broad range of decisions
that impact the target-language code eventually produced
● can include decisions in the intermediate/internal representation,
since those can heavily impact ability to make effective decisions
at the code generation phase

Storage: revisited

● overall storage model chosen: memory driven model (keep
things in memory as much as possible) vs register driven
(keep in registers as much as possible)

● decisions on where/when items reside in memory (static
space, stack space, heap space)

● compiler needs to adhere to processor/OS handling of
memory: usually granted a logical memory space per
program, which OS maps to physical space (preventing
one program from accessing memory space of another)

Typical layout of logical memory

● area for executable code storage
● area for static storage (possibly divided into areas for

global variables, global constants, static local variables...)
● area for run-time stack
● area for heap
● heap and stack often located at opposite “ends” of free

memory space, growing toward one another (allowing
flexibility for which/when grows faster/larger)

Compiler freedoms

● source/target languages generally have strict rules
regarding scope and storage of variables/data

● compiler free to create additional data items (in static
space, on stack, in heap) to aid in program admin and for
optimization (e.g. storing a computed value that will be
used again later)

● compiler also free to arrange data in ways not visible to the
programmer, e.g. try to improve performance by optimizing
cache hit ratio, or try to minimize wasted space

Example: compiler and cache hits

● OS generally has memory divided into pages, keeps a set
of frequently-accessed pages in high speed cache (or
layers of caching)

● compiler might try to ensure that data values that are
frequently used “close” to one another during execution
wind up on the same page, thus improving cache hit ratio

● gets trickier when activation record large enough that it
likely spans multiple pages

Example: minimizing waste space

● compiler must obey OS/hardware memory alignment rules
(e.g. 1-byte items like chars can be at any address, 2-byte
items like shorts must start on an even address, 4-byte
items like ints must start on an address divisible by 4, etc)

● Programmer might provide lists of variables, parameters,
or struct/class fields in orders that don't align with this
naturally, e.g. char w; int x; char y; int z;

● Even if x happens to land on address divisible by 4, that
means z's “natural” starting address would be odd

Space and alignment cont.

● compiler can insert padding (wasted space) in between
variables to get the alignment right yet preserve original
order of variables

● compiler can rearrange variables in memory, going from
most-restricted to least-restricted w.r.t. alignment (e.g. all
the longs/doubles/pointers first, then all the ints/floats, then
all the shorts, then all the bools/chars) ... saves space, but
internally the order may not be what programmer expects
(only relevant if programmer is accessing through offsets)

Intermediate representation

● Will assume a register-driven model, each value gets its
own virtual register, copied to/from the register at entry/exit
points for the relevant scope

● relies on a good register allocation algorithm later to map
these virtual registers to real physical ones, but makes for
simpler IR and good possibilities for optimization

Names: ambiguous, unambiguous

● Code refers to memory locations by names frequently, e.g.
x, y, arr[i,j], (*ptr), etc

● some of these names are unambiguous: can only refer to
one possible storage location, and hence the storage
they're referring to can be kept in a register

● e.g. variable x can be kept in a register (again, with
suitable copies to/from x on scope exits/entries)

Ambiguous references

● Some named references are ambiguous, not clear at
compile time which storage location they'll refer to

● arr[m,n] and arr[i,j], or (*x) and (*y) ... can we be sure
they're not referring to the same storage location?

● *x = i + j

● *y = 1

● z = *x + *y

● If we were keeping (*x) in a register, and (*y) in a register,
we can't be sure they're meant to be two different locations

if x==y then z will be 2,
otherwise z will be i + j + 1

Dealing with ambiguity

● compiler could insert code that will resolve ambiguity at
runtime (e.g. Code to test if x == y first, then update both
registers on the assignment to y)

● compiler could simply put values back in memory where
ambiguous references involved

● either choice involves generation of some additional
runtime operations, each will be superior in certain
circumstances

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

