## Dataflow analysis: intro/iterative

- control flow analysis produces control flow graph (CFG)
- dataflow analysis uses CFG to identify optimization opportunities
- SSA as an intermediate representation, gives good results without needing overly cumbersome data structures
- value numbering (local and superlocal) applied to tree-like subsets of the CFG gives good way to find redundant expressions, simplify expressions, apply constant folding, etc
- deeper analysis needed to find things like uninitialized variables, since we need to account for cycles, reconvergent paths, etc


## Subroutine and program level

- next stages of dataflow analysis take place at the subroutine and whole-program levels
- effective analysis is muddled by things such as
- references to values from other compilation units
- ambiguous value references (e.g. pointers, variable array indices)
- pass by reference parameters
- first, will consider iterative dataflow analysis


## Iterative analysis: subroutine level

- earlier we looked at calculating liveout(b) by repeatedly recalculating it for each of the individual blocks in a subroutine, stopping when no further changes occurred
- we'll apply very similar techniques across a variety of analysis metrics, and look at how those metrics can then be applied
- later will also apply similar techniques at whole-program level


## Dominators in CFG

- given the CFG for a subroutine, a collection of nodes and edges with a unique entry node, n0
- the dominating set for a node, $n$, is the set containing $n$ and those nodes that lie on every path from n0 through n
- dominating set for n 4 below is $\{\mathrm{n} 0, \mathrm{n} 3, \mathrm{n} 4\}$



## Algorithm: dominating sets

- given k blocks, $\mathrm{n} 0, \ldots, \mathrm{nk}-1$
for $i=0 . . k-1: \operatorname{Dom}(n i)=\{n i\}$ changed = true
while (changed)

$$
\begin{aligned}
& \text { changed }=\text { false } \\
& \text { for } i=1 \text { to } k-1 \\
& \text { temp }=\{\text { ni }\} \cup \operatorname{Preds}(n i)
\end{aligned}
$$

if temp != Dom(ni) then
changed = true
Dom(ni) $=$ temp

Preds(n) is the intersection of

- Dom(nj) across all the predecessor nodes of $n$
- example: Dom(ni) sets on each pass

1) $\{n 0\}\{n 1\}\{n 2\}\{n 3\}\{n 4\}$
2) $\{n 0\}\{n 1, n 0\}\{n 2, n 0\},\{n 3\}\{n 4, n 3\}$
n0
3) $\{n 0\}\{n 1, n 0\}\{n 2, n 0\},\{n 3, n 0\}\{n 4, n 3\}$

- n1


4) $\{\mathrm{n} 0\}\{\mathrm{n} 1, \mathrm{n} 0\}\{\mathrm{n} 2, \mathrm{n} 0\},\{\mathrm{n} 3, \mathrm{n} 0\}\{\mathrm{n} 4, \mathrm{n} 3, \mathrm{n} 0\}$
5) same as step 4

- no set can get bigger than k , guaranteed to terminate
- evaluating in an order other than the arbitrary sequence $0 . . \mathrm{k}-1$ might give more efficient calculation ...


## Reverse post-order traversal (RPO)

- post-order traversal processes children of a node first, then the node
- RPO takes post-order traversal sequence then simply reverses it
- computing order(n), assuming $k$ nodes and a global var visitNum
- visitNum initially 0 , order(n) initially -1 for each node $n$

```
rpo(node n)
    for each child, c, of n
    if (order(c) == -1) postorder(c)
    order(n) := (k-1) - visitNum
    visitNum++
```


## RPO advantage

- post-order traversal process order
- n4, n3, n1, n2, n0
n0
- RPO reverses, giving n0, n2, n1, n3, n4
- note that each node's predecessors are processed before the node itself
- for algorithms like the Dom calculator that is exactly what we're hoping for


## Dom vs liveout

- Dom(n) looks for the nodes that appear on every path into n
- liveout(n) looks for the values that appear on any path leading leaving n
- we can actually tweak liveout to make use of RPO for an efficient node-processing order:
- first, reverse the direction of each edge in the CFG
- then use RPO on the resulting graph


## Iterative analysis limitations

- both the Dom and the liveout algorithms assume every path is possible
- the actual logic constraints in the code might preclude some paths
- suppose A is taken only if some condition $x$ is true, and $C$ is taken only if condition $x$ is false, then path $A B C$ can never happen



## Iterative limitations cont.

- Ambiguity seriously limits effectiveness
- using/setting a value in an array (using a non-constant index) forces all array elements to be treated as used/set
- using/setting a value through a pointer forces all possible targets of the pointer to be treated as used/set (this is even worse if pointer arithmetic is permitted)
- The pointer aspect in particular may cause the compiler to avoid putting values in registers if those values may be the target of a pointer


## Expressions/available-in

- similar to liveout, the expressions whose results are available for use at any point $p$
- expression $e$ is available at point $p$ iff
- on every path from the subroutine entry to $p$, e has been evaluated and none of its subexpressions are altered before $p$
- Availableln(n): the set of expressions available in $n$
- DEexpr(n): downward exposed expressions of n:
- evaluated in $n$, subexpressions not subsequently altered in $n$
- exprkill(n): set of expressions killed in n (i.e. by n altering a subexpression used by e)


## Definitions reaching n

- also similar to liveout, identifying set of variable (including temp variable) definitions that reach a point in the CFG
- assignment of value to a variable is a definition, recorded as a pair: the variable name and instruction number
- Reaches(n): set of definitions that reach $n$
- DEdef(n): the downward exposed definitions of $n$ (definitions in n that aren't subsequently killed in n )
- defkill( n ): the definitions killed by n ( n alters the variable through a new definition)


## Expanding to whole-program

- compiler has to make worst-case assumptions about which values are altered by each subroutine
- assume anything the subroutine may alter it does alter
- includes global variables, pass by ref, pointer accessibility
- maymodify(f) the set of names whose values f may alter
- computed using the names locally modified in ftogether with the maymodify $(\mathrm{g})$ for every function $g$ that f calls
- again, iterative computation, repeating until no change

