

Dataflow analysis: intro/iterative

● control flow analysis produces control flow graph (CFG)
● dataflow analysis uses CFG to identify optimization opportunities
● SSA as an intermediate representation, gives good results
without needing overly cumbersome data structures
● value numbering (local and superlocal) applied to tree-like
subsets of the CFG gives good way to find redundant
expressions, simplify expressions, apply constant folding, etc
● deeper analysis needed to find things like uninitialized variables,
since we need to account for cycles, reconvergent paths, etc

Subroutine and program level

● next stages of dataflow analysis take place at the
subroutine and whole-program levels

● effective analysis is muddled by things such as
– references to values from other compilation units
– ambiguous value references (e.g. pointers, variable array

indices)

– pass by reference parameters

● first, will consider iterative dataflow analysis

Iterative analysis: subroutine level

● earlier we looked at calculating liveout(b) by repeatedly
recalculating it for each of the individual blocks in a
subroutine, stopping when no further changes occurred

● we'll apply very similar techniques across a variety of
analysis metrics, and look at how those metrics can then
be applied

● later will also apply similar techniques at whole-program
level

Dominators in CFG

● given the CFG for a subroutine, a collection of nodes and
edges with a unique entry node, n0

● the dominating set for a node, n, is the set containing n
and those nodes that lie on every path from n0 through n

● dominating set for n4 below is { n0, n3, n4 }

n0

n1

n2

n3 n4

Algorithm: dominating sets

● given k blocks, n0,...,nk-1
for i = 0..k-1: Dom(ni) = { ni }

changed = true

while (changed)

 changed = false

 for i = 1 to k-1

 temp = { ni } U Preds(ni)

 if temp != Dom(ni) then

 changed = true

 Dom(ni) = temp

Preds(n) is the intersection of
 Dom(nj) across all the
 predecessor nodes of n

● example: Dom(ni) sets on each pass
1) { n0 } { n1 } { n2 } { n3 } {n4 }

2) { n0 } { n1, n0 } { n2, n0 }, { n3 } { n4, n3 }

3) { n0 } { n1, n0 } { n2, n0 }, { n3, n0 } { n4, n3 }

4) { n0 } { n1, n0 } { n2, n0 }, { n3, n0 } { n4, n3, n0 }

5) same as step 4
● no set can get bigger than k, guaranteed to terminate

● evaluating in an order other than the arbitrary sequence 0..k-1 might give
more efficient calculation ...

n0

n2

n3 n4

n1

Reverse post-order traversal (RPO)

● post-order traversal processes children of a node first, then the node

● RPO takes post-order traversal sequence then simply reverses it

● computing order(n), assuming k nodes and a global var visitNum

● visitNum initially 0, order(n) initially -1 for each node n

 rpo(node n)

 for each child, c, of n

 if (order(c) == -1) postorder(c)

 order(n) := (k-1) - visitNum

 visitNum++

RPO advantage

● post-order traversal process order
– n4, n3, n1, n2, n0

● RPO reverses, giving n0, n2, n1, n3, n4
● note that each node's predecessors are processed before

the node itself
● for algorithms like the Dom calculator that is exactly what

we're hoping for

n0

n1

n2

n3 n4

Dom vs liveout

● Dom(n) looks for the nodes that appear on every path into
n

● liveout(n) looks for the values that appear on any path
leading leaving n

● we can actually tweak liveout to make use of RPO for an
efficient node-processing order:
– first, reverse the direction of each edge in the CFG

– then use RPO on the resulting graph

Iterative analysis limitations

● both the Dom and the liveout algorithms assume every
path is possible

● the actual logic constraints in the code might preclude
some paths

● suppose A is taken only if some condition x is true, and C
is taken only if condition x is false, then path ABC can
never happen

n0

n1

n2

n3

n4

n5

A B
C

Iterative limitations cont.

● Ambiguity seriously limits effectiveness
– using/setting a value in an array (using a non-constant index)

forces all array elements to be treated as used/set

– using/setting a value through a pointer forces all possible
targets of the pointer to be treated as used/set (this is even
worse if pointer arithmetic is permitted)

● The pointer aspect in particular may cause the compiler to
avoid putting values in registers if those values may be the
target of a pointer

Expressions/available-in

● similar to liveout, the expressions whose results are
available for use at any point p

● expression e is available at point p iff
– on every path from the subroutine entry to p, e has been

evaluated and none of its subexpressions are altered before p
● AvailableIn(n): the set of expressions available in n
● DEexpr(n): downward exposed expressions of n:

– evaluated in n, subexpressions not subsequently altered in n
● exprkill(n): set of expressions killed in n (i.e. by n altering a

subexpression used by e)

Definitions reaching n

● also similar to liveout, identifying set of variable (including
temp variable) definitions that reach a point in the CFG

● assignment of value to a variable is a definition, recorded
as a pair: the variable name and instruction number

● Reaches(n): set of definitions that reach n
● DEdef(n): the downward exposed definitions of n

(definitions in n that aren't subsequently killed in n)
● defkill(n): the definitions killed by n (n alters the variable

through a new definition)

Expanding to whole-program

● compiler has to make worst-case assumptions about
which values are altered by each subroutine

● assume anything the subroutine may alter it does alter
– includes global variables, pass by ref, pointer accessibility

● maymodify(f) the set of names whose values f may alter
– computed using the names locally modified in f together with

the maymodify(g) for every function g that f calls

● again, iterative computation, repeating until no change

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

