

From DFA to code

● Assuming we have produced a minimal DFA for the token types
in our language (e.g. via Thompson's, subset construction, and
Hopcroft's) we now need to produce actual scanner code
● There are three common approaches: table-driven scanners,
direct-coded scanners, and hand-coded scanners
● Each involves producing code to simulate the DFA: reading input
characters and carrying out transitions, then identifying the correct
token type
● Differences are in how the simulation is carried out

Process (for all three approaches)

● In each case, reads and transitions are simulated until a
point is reached at which no valid transition is available

● If current state is an accept the corresponding token type
is output and the simulation begins anew for next token

● If current state is not an accept the simulation rolls back to
most recent accept state (if any) and that state's token
type is output, then the simulation begins anew

● If no accept state has been encountered then the input is
invalid

Table-driven scanners

● The scanner code itself is relatively simple in this method,
as the language-specific information is held in a set of
tables: a Classifier table, a Transition table, and a Token
Type table

● The scanner generator produces these tables based on
the minimized DFA produced earlier

● A fixed algorithm is used to read the input and use the
tables to conduct the scanning (the algorithm is
independent of the language being scanned)

Direct coded scanners

● Rather than using lookup tables, language-specific code is
used during the scanning process, with unique code
segments corresponding to each DFA state

● The reduces the time/memory needed for table lookups,
but increases the code size/complexity, and makes the
scanner code specific to a single source language

● Depending on the size and classification techniques for the
sets of input characters, this can be significantly better or
worse than the table driven approach

Hand coded scanners

● Still widely used, relying on the skills of the developers to
recognize and implement improvements on either of the
other techniques (or to use hybrids of the other
techniques)

● A number of common areas for improvement will be
examined

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

