

Compilers grab bag

●... this was intended to focus on whole-program analysis, but
turned into a collection of all the topics I wish we'd had more time
for ...
● whole program analysis (revisited)
● code generation (revisited)
● scalar optimizations
● instruction selection
● instruction scheduling
● register allocation

Whole-program analysis

● largely dependent on call-graph construction
● call-graph complicated by higher order functions:

– determining which functions could be called by the higher order
function requires knowledge of which functions could be passed
as parameters

– further complicated if functions/function references can also be
stored in variables

– not unlike the pointers/ambiguity issues discussed earlier,
compiler may assume anything passable needs to be included
in the call graph

Other whole-program concerns

● OO related issue: object initialization, cleanup, garbage
collection, dynamic binding

● recognition/propagation of constant-valued function
parameters and return values

● dataflow analysis techniques beyond the iterative ones
● faster/more accurate dominance computation

Code generation (revisit)

● mapping each SSA sequence into target language

● typically build/maintain tables with characteristics of target
language/architecture

– registers available, naming scheme, sizes

– memory alignment sizes/rules,

– procedure call conventions

– specific instruction details

● need to pick the set of instructions and schedule an order for them,
including allocation of which registers they use

● picking instructions, scheduling, and register allocation are all
computationally hard problems

Scalar optimizations

● eliminating useless code: mark and sweep algorithm

– mark all useless

– sweep through, mark useful if i/o, affects return value, or affects storage
accessible outside routine

– trace all useful items back to their sources (and their sources and so on)
marking them useful

– remove anything still listed as uselss

● eliminating useless code II

– unreachable code (e.g. after a jump but before a label)

– empty blocks

– redundant blocks

Instruction selection

● during tree-walk, map names to physical storage, apply
loads/stores as needed, map SSA ops to target op(s)

● try pattern matching on subtrees: map specific subtree patterns
to target language patterns, allows recognition of larger-scale
replacements

● use tables of rewrite rules detailing how to take a subtree
pattern and replace it with target language pattern

● searching for a “good” set of pattern matches (and hence
rewrites) to cover entire tree

● follow with peephole optimization: sliding window looking at
small sequence of instructions, seeking better rewrites

Instruction scheduling

● overlap instruction execution where possible, pipeline
fetching of operands and instructions where possible

● sometimes must wait for completion of an operation, or to
abandon pipelined operands/instructions due to result of
another calculation or branch

● ideally, instruction scheduler picks an instruction sequence
that minimizes the frequency of such delays

● work off partial ordering for instruction sequences (data
dependencies), first applied strictly within the basic blocks,
then to extended basic blocks (like with value numbering)

Register allocation

● registers are fastest location in memory
● often the only location accessible for some

operations/operands
● effective register allocation crucial for performance
● take code that uses N registers and rewrite it to use M

(presumably M being the number available on the target machine)

● decide which values are safe for registers (deal with
ambiguity), pick which give greatest benefits

● might have to map to multiple pools of registers (e.g. general
purpose vs floating point)

Allocation and assignment

● allocator might split task into two parts:
– allocation: taking the N input names and mapping them into M

new names (reducing total number of names used to the
desired level)

[this is the harder of the two problems: NPc vs poly]
– assignment: mapping the specific M new names to actual

registers in the target language

Local allocation/assignment

● applied within a basic block

– M total registers available, k of those set aside for handling values being
loaded/stored from/to memory

● top down approach

– count uses of each variable in block

– put most frequent (M-k) vars in registers, load/store others when needed

● bottom up approach

– track sequence of upcoming value uses

– fill available registers in sequence

– on running out of registers, “spill” the value that won't be needed for the
longest time in the future

Subroutine allocation/assignment

● trying to minimize overall impact of spills
● much more challenging than just within a simple block,

trying to resolve cross-block issues
● actual costs/benefits depend on which blocks actually run

during execution, in which order, and how often
● live range: set of definitions and their uses that are used

together across a sequence of blocks, give a measure of
which values may belong together in registers

Graph colouring and registers

● can k-colour a graph if we can colour the nodes on the
graph so that no two like-coloured nodes share an edge

● interference graph models the values in a program as
nodes, with edges between them if they “need” to be in
registers at the same time

● if we can k-colour the interference graph then we can
satisfy the constraints using k registers

● if we can't colour the graph with the number of registers
actually available, then we'll need to spill some values to
memory and try again ... looking for low cost spills

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

