

Heap management

● compiler must address language's memory management plan
● can programmer explicitly request/free memory?
● is garbage collection automated, and scheduled how?
● is there built in protection against memory leaks, dangling
pointers, etc?
● when memory is requested, how is the specific memory segment
found and allocated?
● when memory is freed, how is it returned to the free “pool”?
● what happens when free memory is low, or fragmented?

Allocation/deallocation

● typically maintain a pool of chunks of free memory
● many different allocation algorithms for handling requests

– first fit: take from first big enough chunk

– best fit: take from smallest chunk that's big enough

– worst fit: take from largest existing free chunk

● on deallocation, need to return to free pool, and ideally
consolidate adjacent free chunks into single larger chunks

● we'll look at a gnu-ish approach shortly

Garbage collection

● If just a single pointer/reference to each dynamically
allocated item then it's easy to see when to deallocate

● With multiple pointers/references, how do we know when
the last reference to something ends?

● When should the item itself be deleted?
● Common approaches are

– maintain reference counts (delete when count of refs hits 0)
– sweep algorithms (search out what is/is not still accessible)

Sweep algorithms

● sweep algorithms look to eliminate memory leaks: find
things that are no longer accessible and delete them
– Mark every allocated item in heap as “unreferenced”

– Go through every pointer/reference currently active, mark what
they point at as “referenced”

– Delete everything that is still “unreferenced”

● can be invoked at fixed intervals, “on demand” by program,
or when free memory drops below specified threshold

Reference counts

● often used in “smart pointer” approaches
● when something is allocated, create a smart pointer object

that is a pointer into the heap plus a count
● pointers/references to the target item go through smart

pointer, count is incremented/decremented as needed
● when count hits 0 delete the memory and set the smart

pointer's internal pointer to null (keep smart pointer alive)
● remaining smart pointer also catches dangling references

defragging: copy collectors

● Might have lots of tiny fragments of free memory, but none
big enough to satisfy existing request

● copy collector copies all current allocations to a second
memory pool, consolidating them into one large block,
then freeing original memory pool

● likely to be slow
● breaks programmer code if they're maintaining/using

pointers to items (but might play well with smart pointers)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

