

Parsing considerations

● Other grammar types (SLR, LALR)
● Which parsing approach should we choose, when?
● What about error handling/recovery by the parser?
● What happens if context-sensitive information is needed to
eliminate syntax ambiguities?
● Comparisons of left and right recursion in grammars
● What optimizations can be performed?

SLR and LALR grammars

● These produce smaller tables than LR(1), and can be
generated for same sets of languages

● SLR make use of restricted grammars that eliminate LR(1)
need for lookahead, with resulting reduction in table size

● LALR(1) categorizes some items in a state's set are
critical, while others can be derived from the critical ones,
so table construction only represents the critical ones

Picking an approach

● Handcrafted vs table driven?
– Better error handling/optimization vs reliability/easy generation

● Top-down vs bottomup? LL(1), LR(1), LR(k), SLR, LALR?
– Top-down, recursive descent a better fit for hand coding

– Grammar choice might be dictated by available skill/toolsets

Error checking and recovery

● Providing good error messages is key role of most
compilers

● Ideally, even if an error is found in one statement, the
compiler can generate an error message and still proceed
to later statements

● FOLLOW is useful here, to identify potential points to
resume processing if an error is found in current statement

● Hand-coded recursive descent parsers provide the
compiler writer with good opportunities to customize error
messages and handling to the current context

Context sensitive ambiguities

● Sometimes a keyword can have two or more different
meanings in different contexts:
– E.g. Suppose in our language the syntax s(i,j) can mean either

a function call or an index into a two-dimensional array

● The parser needs context-sensitive information to identify
which use is applicable

● Alternatively, the parser can identify the dual form, and
wait until context-sensitive analysis to identify which
specifically applies

Left vs right recursion

● Top-down parsers rely on right-recursive grammars
● Bottom-up parsers can work with either left or right
● Compiler writer must consider implications when writing

the grammar to be used by the compiler
● Left recursion naturally supports left associativity, right

recursion naturally supports right associativity
● Rule of thumb: left recursion can give smaller stack depth

Grammar optimization

● Language and implementation-dependent issues to
consider

● Can we optimize by reducing the grammar itself?
● Can we optimize by collapsing equivalent rows or

equivalent columns in the table?
● Is it more effective to retain the (optimized) tables, or to

use them as the basis for a direct-coded approach?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

