Local optimizations

- performed strictly within a basic sequential block
- simpler analysis: every statement in the block runs in one specific order every time the block is invoked
- can't use wider context (e.g. which variables within block are also used before/after the block)
- can resolve constant expressions
- can re-use previously computed values
- can simplify expressions through by applying identities
- can rewrite expressions for greater parallelization

Local value renumbering (LVN)

- assign unique integer id to each value computed in block
- will use to refer to previously computed values
- expressions can be given the same id \# if they have provably equal values for all operands of the expressions
- go through list of statements of form T = L Op R, and if expression previously computed then replace RHS with the LVN from the previous instance

Numbering algorithm

- Given block with n operations $T_{i}=L_{i} O P_{i} R_{i}$
- Maintain table of known LVNs so far

```
for i = 0..n-1:
lookup LVN for \(L_{i}, R_{i}\)
``` new LVNs assigned on first use of vars, literals if expr " \(L_{i}\) OPi Ri" already in table replace \(T_{i}=\) expr with \(T_{i}=\) expr's LVN from table else Get new LVN, v, and insert expr,v in table record \(\mathrm{T}_{\mathrm{i}}\) 's LVN in table

\section*{Example}
- first statement
- first time for \(x, y\), new expr \(x-y\), assign LVNs
- second statement
- looks up w, new z, new expr
- third statement
- new expr (different x LVN)
- fourth statement
- expr is same as second statement, re-use LVN

Original code
\[
w=x-y
\]
\[
x=w+z
\]
\[
y=x-y
\]
\[
z=w+z
\]

Showing LVNs
\[
w(2)=x(0)-y(1)
\]
\[
x(4)=w(2)+z(3)
\]
\[
y(5)=x(4)-y(1)
\]
\[
z(4)=w(2)+z(3)
\]

\section*{Table lookups, commutative ops}
- use hash table, key being combination L(LVN), OP, R(LVN)
- hash function can be tweaked to recognize expressions on commutative ops as the same, e.g. L,+,R hashes the same as R,+,L
- thus LVNs automatically recognizing that \(x=y+z\) can be treated the same as \(x=z+y\)

\section*{Constant folding}
- during LVN numbering, can also evaluate constant expressions
\(-x=3+5\)
- gets re-written as
- \(x=8\)
- LVN for x gets an annotation that it is a constant
- thus can also "fold" later constant expressions that use \(x\)
- folding would take place right after the L/R lookup at the beginning of the algorithm

\section*{Applying identities}
- during LVN algorithm can also apply any identities involving specific literals, simplifying expressions
- \(x+0,0+x\) becomes \(x\)
- \(x * 1,1^{*} x\) becomes \(x\)
- \(x^{*} 0,0\) * \(x\) becomes 0
- \(x^{1}\) becomes \(x\)
- \(x^{0}\) becomes 1
- \(x \ll 0, x \gg 0\) becomes \(x\)
- \(x^{*} 2^{n}\) becomes \(x \ll n\)
- xAND \(x\) becomes \(x\)
- etc

\section*{Naming implications}
- simplest approach is SSA-style, use a new variable name for each LHS target, consider problem below:
\(-\mathrm{v}=\mathrm{w}+\mathrm{x}\)
\(-y=w+x / /\) can re-write as \(y=v\)
\(-\mathrm{v}=0\)
- \(z=w+x / /\) could have re-written as \(z=v\), but over-wrote \(v\)
- otherwise need to be very careful about use of our hash table records, since LVN values associated with variables can change over time

\section*{Indirection and ambiguity (again!)}
- as discussed earlier, pointers and array indexing can complicate attempts to identify LVNs, e.g.
\[
\begin{aligned}
& -a=b+c \\
& -{ }^{*} p \operatorname{tr}=5 \\
& -d=a \\
& -e=b \\
& -f=c
\end{aligned}
\]
- the pointer use could modify \(a, b\), or \(c\)
- compiler would have to proceed as if each of them has changed, even though at most one of them actually would

\section*{Parallelization opportunities}
- many processors have multiple adders, and can carry out two (or more) arithmetic operations in a single cycle
- permits parallelization of parts of expression evaluation
- \(w+x+y+d / /\) usually 3 cycles, for the 3 additions
- could parallelize:
- adder1 does tmp1 = \((w+x)\) while adder2 does tmp2 \(=(y+d)\)
- then one of them does tmp1+tmp2
- thus just 2 cycles
- bigger parallelization potential for larger expressions

\section*{Rewriting and parallelizing}
- For expressions that use a single operator type, that is both commutative and associative, we can rewrite operands in any order
- provides lots of opportunities to improve
\(-x+3+y+9+z+200\)
- default sequential handling left-to-right, 5 cycles
- group the constants, apply identities, and restructure
\(-(x+y)+(z+212)\)
- done in 2 cycles using 2 adders

\section*{Tree-balancing}
- think of expression in abstract syntax tree form
- we want to balance the tree, minimizing its height
- expressions represented as sequences of \(T=L\) op \(R\)
- need to know where a value computed earlier is used later (i.e. LVNs), so build these dependencies into the tree
- will try to parallelize across instruction sequences

\section*{Tree balancing process}
- don't want tree revision to change any observable values, to be any longer than original, nor to look outside the block
- build the dependency tree
- try to re-balance it
- find roots of relevant subtrees, whose operations consist of just one form of associative, commutative operator
- re-write the transformed code
- apply constant folding, identities as we re-write

\section*{Tree balancing approach}
- assuming we've identified roots of target trees, and ordered by precedence of the tree operators (highest first)
- as we process statements, we'll queue up values (variable names and literals) for later processing
- as we re-write the trees, we rank elements to ensure code that calculates value \(X\) is output before code that uses \(X\)
- constants get rank 0 , variables get rank 1 , rank for expressions is the sum of their subtree ranks
- lower-ranked terms get produced before higher-ranked terms

\section*{Tree balancing algorithm}
- assuming we've identified the roots of relevant subtrees (i.e. ops of a single type, commutative and associative)
- root nodes initially assigned rank -1
- for each root node, R, call Balance(R)
- Balance(node n) // n represents T = L op R
- if n's rank is -1 (i.e. not yet processed):
- \(Q=\{ \} \quad / /\) queue of values used in the subtree
- \(\operatorname{rank}(\mathrm{T})=\) flatten \((\mathrm{L}, \mathrm{Q})+\) flatten \((\mathrm{R}, \mathrm{Q})\)
- rebuild(n, Q,op) // writes balanced version of the operands

\section*{Flatten(n, Q)}
- flatten adds operands from the subtree to the queue
- flatten returns the rank of the subtree
- flatten(node n, queue Q) // node is a value or an op
- if n is a constant: assign rank 0 , enqueue
- elseif n is a previously assigned var: assign rank 1, enqueue
- elseif \(n\) is a root: call Balance(\(n\)), enqueue
- else \(n\) is operator node, with \(L\) and \(R\) operands
- call flatten \((L, Q)\), flatten \((R, Q)\), rank is sum
- return rank of \(n\)

\section*{Rebuild(root, Q,op)}
- called after Balance has put the operands for op into Q while Q not empty
pull next 2 args, L, R, from Q // just binary operators so far if both are constants:
calculate result
if \(Q\) is now empty
emit code: "root = result", assign 0 as root's rank
else enqueue result with a rank of 0
// else case on next slide

\section*{Rebuild(n,Q,op) continued}
else // at least one is not a constant
if \(Q\) is now empty result \(=n\),
else result = generateNewName()
emit code "result = L op R", rank is rank(L) \(+\operatorname{rank}(R)\)
if \(Q\) isn't empty yet then enqueue result
\(/ / \mathrm{n}\) is a subtree, so its computed result must be getting used later

\section*{Example}

ideally: re-group k's \(3,2,5\) into a single constant 10 , and restructure trees to be height 3 instead of 4

\section*{Balance(i)}
- flatten(2) + flatten(f)
- 2 is const, rank 0 , gets enqueued
- flatten(f) calls flatten(a) + flatten(c)
- var a, rank 1, gets enqueued
- flatten(c) calls flatten(a) + flatten(b)
- vars a and b, each rank 1, get enqueued
- rebuild(i, [b,a,a,2], +) emits
- tmp1 = b + a
- tmp2 = a + 2
- i = tmp1 + tmp2
enqueue enqueues by rank, lower ranks go in front of higher new values in front of old (of equal rank)

\section*{Balance(k)}
- flatten(e) + flatten(h)
- flatten(e) calls flatten(b), flatten(d)
- vars b, d get rank 1, enqueued
- flatten(h) calls flatten(3), flatten(g)
- const 3 gets rank 0, enqueued
- flatten(g) calls flatten(2), flatten(5)
- consts 2,5 get rank 0 , enqueued
- rebuild(k, [5,2,3,d,b], +) folds the constants and emits
- tmp3 = 10 + d
\(-\mathrm{k}=\mathrm{b}+\mathrm{tmp} 3\)```

