

Local optimizations

● performed strictly within a basic sequential block
● simpler analysis: every statement in the block runs in one
specific order every time the block is invoked
● can't use wider context (e.g. which variables within block are
also used before/after the block)
● can resolve constant expressions
● can re-use previously computed values
● can simplify expressions through by applying identities
● can rewrite expressions for greater parallelization

Local value renumbering (LVN)

● assign unique integer id to each value computed in block
● will use to refer to previously computed values
● expressions can be given the same id # if they have

provably equal values for all operands of the expressions
● go through list of statements of form T = L Op R, and if

expression previously computed then replace RHS with
the LVN from the previous instance

Numbering algorithm

● Given block with n operations Ti = Li OPi Ri

● Maintain table of known LVNs so far
for i = 0..n-1:

 lookup LVN for L
i
, R

i

 new LVNs assigned on first use of vars, literals

 if expr “L
i
 OPi Ri” already in table

 replace T
i
 = expr with T

i
 = expr's LVN from table

 else Get new LVN, v, and insert expr,v in table

 record T
i
's LVN in table

Example

● first statement

– first time for x, y, new expr x-y, assign LVNs

● second statement

– looks up w, new z, new expr

● third statement

– new expr (different x LVN)

● fourth statement

– expr is same as second statement, re-use LVN

Original code
w = x - y
x = w + z
y = x - y
z = w + z

Showing LVNs
w(2) = x(0) - y(1)
x(4) = w(2) + z(3)
y(5) = x(4) - y(1)
z(4) = w(2) + z(3)

Table lookups, commutative ops

● use hash table, key being combination L(LVN), OP, R(LVN)
● hash function can be tweaked to recognize expressions on

commutative ops as the same, e.g. L,+,R hashes the
same as R,+,L

● thus LVNs automatically recognizing that x=y+z can be
treated the same as x=z+y

Constant folding

● during LVN numbering, can also evaluate constant
expressions
– x = 3 + 5

● gets re-written as
– x = 8

● LVN for x gets an annotation that it is a constant
● thus can also “fold” later constant expressions that use x
● folding would take place right after the L/R lookup at the

beginning of the algorithm

Applying identities

● during LVN algorithm can also apply any identities involving specific
literals, simplifying expressions

– x + 0, 0 + x becomes x

– x * 1, 1 * x becomes x

– x * 0, 0 * x becomes 0

– x1 becomes x

– x0 becomes 1

– x << 0, x >> 0 becomes x

– x * 2n becomes x << n

– x AND x becomes x

– etc

Naming implications

● simplest approach is SSA-style, use a new variable name
for each LHS target, consider problem below:
– v = w + x

– y = w + x // can re-write as y = v

– v = 0
– z = w + x // could have re-written as z = v, but over-wrote v

● otherwise need to be very careful about use of our hash
table records, since LVN values associated with variables
can change over time

Indirection and ambiguity (again!)

● as discussed earlier, pointers and array indexing can
complicate attempts to identify LVNs, e.g.
– a = b + c

– *ptr = 5

– d = a
– e = b

– f = c
● the pointer use could modify a, b, or c
● compiler would have to proceed as if each of them has

changed, even though at most one of them actually would

Parallelization opportunities

● many processors have multiple adders, and can carry out
two (or more) arithmetic operations in a single cycle

● permits parallelization of parts of expression evaluation
– w + x + y + d // usually 3 cycles, for the 3 additions

● could parallelize:
– adder1 does tmp1 = (w+x) while adder2 does tmp2 = (y+d)

– then one of them does tmp1+tmp2

● thus just 2 cycles
● bigger parallelization potential for larger expressions

Rewriting and parallelizing

● For expressions that use a single operator type, that is
both commutative and associative, we can rewrite
operands in any order

● provides lots of opportunities to improve
– x + 3 + y + 9 + z + 200

– default sequential handling left-to-right, 5 cycles

● group the constants, apply identities, and restructure
– (x + y) + (z + 212)

– done in 2 cycles using 2 adders

Tree-balancing

● think of expression in abstract syntax tree form
● we want to balance the tree, minimizing its height
● expressions represented as sequences of T = L op R
● need to know where a value computed earlier is used later

(i.e. LVNs), so build these dependencies into the tree
● will try to parallelize across instruction sequences

Tree balancing process

● don't want tree revision to change any observable values,
to be any longer than original, nor to look outside the block

● build the dependency tree
● try to re-balance it

– find roots of relevant subtrees, whose operations consist of just
one form of associative, commutative operator

● re-write the transformed code
– apply constant folding, identities as we re-write

Tree balancing approach

● assuming we've identified roots of target trees, and
ordered by precedence of the tree operators (highest first)

● as we process statements, we'll queue up values (variable
names and literals) for later processing

● as we re-write the trees, we rank elements to ensure code
that calculates value X is output before code that uses X
– constants get rank 0, variables get rank 1, rank for expressions

is the sum of their subtree ranks

– lower-ranked terms get produced before higher-ranked terms

Tree balancing algorithm

● assuming we've identified the roots of relevant subtrees
(i.e. ops of a single type, commutative and associative)

● root nodes initially assigned rank -1
– for each root node, R, call Balance(R)

● Balance(node n) // n represents T = L op R
– if n's rank is -1 (i.e. not yet processed):

● Q = { } // queue of values used in the subtree
● rank(T) = flatten(L,Q) + flatten(R,Q)
● rebuild(n, Q, op) // writes balanced version of the operands

Flatten(n,Q)

● flatten adds operands from the subtree to the queue
● flatten returns the rank of the subtree
● flatten(node n, queue Q) // node is a value or an op

– if n is a constant: assign rank 0, enqueue

– elseif n is a previously assigned var: assign rank 1, enqueue
– elseif n is a root: call Balance(n), enqueue
– else n is operator node, with L and R operands

● call flatten(L,Q), flatten(R,Q), rank is sum

– return rank of n

Rebuild(root,Q,op)

● called after Balance has put the operands for op into Q

while Q not empty

 pull next 2 args, L, R, from Q // just binary operators so far

 if both are constants:

 calculate result

 if Q is now empty

 emit code: “root = result”, assign 0 as root's rank

 else enqueue result with a rank of 0

 // else case on next slide

Rebuild(n,Q,op) continued

 else // at least one is not a constant

 if Q is now empty result = n,

 else result = generateNewName()

 emit code “result = L op R”, rank is rank(L) + rank(R)

 if Q isn't empty yet then enqueue result

 // n is a subtree, so its computed result must be getting used later

Example

c = a + b

e = b + d

f = a + c

g = 2 + 5

h = 3 + g

i = 2 + f

k = e + f

+,i

+,2 +,f

+,c

+,a +,b

+,e

+,d +,2 +,5

+,g+,3

+,h

+,k

ideally: re-group k's 3,2,5 into a single constant 10,
and restructure trees to be height 3 instead of 4

Balance(i)

● flatten(2) + flatten(f)

– 2 is const, rank 0, gets enqueued
● flatten(f) calls flatten(a) + flatten(c)

– var a, rank 1, gets enqueued

● flatten(c) calls flatten(a) + flatten(b)

– vars a and b, each rank 1, get enqueued
● rebuild(i, [b,a,a,2], +) emits

– tmp1 = b + a

– tmp2 = a + 2

– i = tmp1 + tmp2

enqueue enqueues by rank,
lower ranks go in front of higher
new values in front of old (of equal rank)

Balance(k)

● flatten(e) + flatten(h)
● flatten(e) calls flatten(b), flatten(d)

– vars b, d get rank 1, enqueued
● flatten(h) calls flatten(3), flatten(g)

– const 3 gets rank 0, enqueued
– flatten(g) calls flatten(2), flatten(5)

– consts 2,5 get rank 0, enqueued
● rebuild(k, [5,2,3,d,b], +) folds the constants and emits

– tmp3 = 10 + d

– k = b + tmp3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

