

Subroutine optimization

● most subroutine optimizations rely on some form of dataflow
analysis having been performed first
● will revisit dataflow analysis in more detail later
● some key useful sets:
● liveout(b): variables live on exit from block b, roughly the variables whose
values are set in/before b and get used after b (not getting overwritten first)
● uevar(b): upward-exposed variables of block b (b uses these variables'
values as they were set by some previous block)
● varkill(b): the variables whose values b sets at some point (i.e. killing their
old values)

liveout(b) for basic blocks

● the liveout set for a block will be used repeatedly in our
optimizations

● algorithm to compute liveout(b):
initialize liveout(b) to { }

for each successor, m, of block b

 add each variable of uevar(m) to liveout(b)

 for each variable, v, in liveout(m)

 if v is not in varkill(m) then add it to liveout(b)

computing liveout for subroutines

● use our old algorithm to identify the blocks within the
subroutine
– two passes: all labelled entry instructions as entry points, then

second pass to identify exit points

● compute uevar(b) and varkill(b) for individual blocks
– one pass: anything set gets added to varkill, anything used

beforehand gets added to uevar

● now keep repeating liveout(b) computations across all
blocks, until results stabilize (see next slide)

compute all liveout(b)'s

for each block, b: set liveout(b) to { }

changed=true

while (changed)

 changed=false

 for each block, b:

 recompute liveout(b) // for just the block itself

 if new result for b differs from old

 then changed=true

// uevar(b) and varkill(b) don't ever change

// before first pass each liveout starts as { }

// each pass some liveouts may have changed,

// so the following pass their predecessor liveouts can change

liveout implications

● hypothetically, anything in liveout(n) might be used
uninitialized in b, since we don't know if it was correctly set
in some previous block/subroutine

● in fact, that's overly conservative: sometimes as
programmers we can see logically that uninitialized use is
impossible

● the compiler has to take a conservative approach when
generating warnings

Example: conservative warning

int f(int i) {

 if ((i % 2) == 0) {

 return 10;

 } else if ((i % 2) == 1) {

 return 20;

 }

}

● complains that you're missing a return
● we can tell that logically it is fine, one of the two branches

will always run

Uses of liveout

● can be used for subroutine-level register allocation (only
live values need allocation)

● can be used for SSA construction (skipping steps for
values in blocks where they're not live)

● eliminating needless stores to memory (if not live then the
value is not needed further)

Code placement of blocks

● the order in which blocks are stored in a subroutine (in the
executable) can impact memory performance
(paging/caching) and instruction caching

● we want to identify blocks that are frequently used in
sequence, and store them together in the executable

● this is more important for commonly used sequences of
blocks than for rarely used sequences

● will identify paths of blocks, associate frequencies with
each (how often is that sequence used)

Hot paths

● hot paths are those most frequently used
● often identified by profiling the code then optimizing further

– run gprof or other utilities

– store results where compiler can make use of it

– re-compile for optimization

● will determine a good code layout in two steps:
– finding hot paths

– adjusting code layout

Building paths

● start with each block is just a path by itself, with a infinite
weight (representing frequency of use)

● keep joining paths together pairwise using edges from the
control flow graph, start with heaviest weighted edges

● new path's weight is minimum of weights of the joined
paths and the weight of the edge
– e.g. paths p1 weight 5, p2 weight 7

– edge e with weight 4 connects end of p1 to front of p2

– can connect p1,p2 together into a single path

– new path weight is min(5,7,4)

Path-building cont.

● algorithm keeps making passes through the edge list until
there is no change in the set of paths (i.e. can no longer
find a p1,p2,e combo we can combine)

● at end of algorithm we have the blocks divided across a
collection of paths, and each path has a weight

● now can use the possible paths to determine the order we
should use for blocks in the subroutine's code segment of
the executable

Layout algorithm

collection = { path-containing-routine's-start-block }

while collection not empty

 take out lowest priority path, p

 for each block, b, on path p

 place b at the end of the remaining code space

 for each block, b, on path p

 for each edge (b, n) where n is not yet placed

 if a path using (b,n) has not yet been placed

 in the collection, then add it to collection

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

