

Other type issues (arrays, structs...)

● we should examine the code needed to access array elements
● first, consider one-dimensional arrays, random access
● suppose our array indices start at base address B (usually 0 or
1, but could be any integer)
● given an array of N elements, each with size S
● the offset to element i is then (i-B)*S
● note that if B is 0 then this becomes simply i*S

1-D array, random access

● possible pseudo-asm to access Arr[i], where B=1, S=8
– loadAddr @Arr,R1 // copy Arr's addr to R1

– load i, R2 // copy i from mem to R2

– subi 1,R2 // subtract B from i

– multi 8,R2 // multiply by 8 to get offset to i

– add R1,R2,R2 // compute full address of A[i]

– load R2,R3 // finally, R3 := Arr[i]

Some optimizations

● possible pseudo-asm to access Arr[i], where B=1, S=8
– loadAddr @Arr,R1 // copy Arr's addr to R1

– load i, R2 // copy i from mem to R2

– // can get rid of subtract if B is 0

– lshift 3,R2 // bit shift quicker than multiply

– // often a combined load op availab, e.g.

– loado R1,R2,R3 // R3 := Arr[i]

1-dim, sequential access

● common to access a number of elements in order, e.g.
– for i = a to b: Arr[i] = 0;

● instead of computing from scratch each time:
– compute addr for Arr[a] normally

– for each subsequent i, simply add the element size (e.g. 8)

● assumes elements are stored sequentially in memory

Multi-dim, sequential access
● for r = m to n

– for c = a to b

● Arr[r][c] = 0

● before first loop:

– compute rowstart = addr of Arr[r][a]

– offset=0

● at end of each pass through inner loop

– add element size to offset

● at end of each pass through outer loop

– add Arr's total row size to rowstart

– set offset back to 0

Indirection vectors: 2-d

● each row of the array stored as one-dim array
● “outer” dimension of array is actually an array of pointers

to the rows
– Arr[i] points to i'th row
– Arr[i][j] accesses j'th element of i'th row

● uses extra space (for the outer 1-d array), but rows no
longer need to be contiguous

Access via indirection vector

● Arr actually holds address of indirection vector
● Suppose we want to iterate through all elements

– loadAddr @Arr, R0 // get addr of indir vector

– repeat for each row
● loadAddr R0,R1// get addr of row
● loadi 0,R2 // offset to first element in row
● repeat for each element in row:

– loado R1,R2,R3 // R3 = Arr[0][0]
– addi 8,R2

● addi 8,R0 // R1 := addr holding start of next row

Arrays as params

● usually passed as an address, even if goal is “by value”
● for multidim arrays, callee needs to know row sizes
● what if they're not known at compile time? e.g.

dynamically allocated
● compiler can generate a descriptor: record of number of

array dimensions and sizes
● compiler can pass a pointer to the descriptor as the array

“parameter” (this ptr often called a dope vector)
● means adding extra code to callee to access descriptor

Character arrays as strings

● null terminated (O(n) to find end) vs store size (extra storage needed)

● access generally the same as for arrays

● what if a “char” is smaller than the smallest addressable size in asm

– need to add bitmask operations around char access!
● concat(a,b):

– either a:=a.b (simply copy b to end of a's space)

– or return new string containing a.b

– length(a.b):
● concatenate first then compute
● or compute length(a)+length(b)

Structures/records

● as discussed earlier, need to map order/offsets of fields,
padding or re-ordering for alignment rules

● x.s might be implemented like
– loadAddr @X, R1

– loadi 12, R2 // supposing 12 is the offset to S

– loado R1,R2,R3 // R3 := x.s

Arrays of structs

● could be implemented like programmer may expect, i.e. As
an actual array of structs

● compiler could actually choose to implement it as a struct
of arrays!
– could provide more efficient sequential access when iterating

across a fixed field

– difference not visible to the programmer

Unions

● Allow programmer to specify a set of possible data types
for the item

● Item given just enough memory to store largest of the data
types in the set
– union num { int i; float f; } // num is int or float

– num X;

– x.i = 3; // store int 3 in x's memory space

– x.f = 1.23; // overwrite x's space with float 1.23

– int v = x.i; // use x's mem space as if type int,

– // copying contents to v

Pointers and ambiguity (again)

● cold memory address/reference
● complicate compiler's ability to keep things in registers

– *x could refer to same stored value as z, or as *y

– could even refer to same stored value as *(y + 600)

● if compiler has each of the referenced values in registers
then it can't know which ones are referring to the same
“real” value

● has to take a safe/conservative approach and put things
back in memory before/after uses

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

