
Designing and Implementing a Fault Tolerant Distributed
Rate Limiting Algorithm

Richard Ramsden
Directed Studies CSCI 485 under the supervision of Dr. David Wessels

Vancouver Island Unisveristy
In collaboration with Bravenet Media

ABSTRACT

Many cloud-based services need the ability to control traf-
fic over multiple servers for Quality of Service (QoS) and
pricing purposes. However, due to the distributed nature of
the cloud enforcing a usage limit over multiple machines is
non-trivial. In a distributed system servers fail for numerous
reasons: power failures, broken hardware, etc. Worse, net-
work problems occur frequently causing links between servers
to break. Creating a distributed rate limting algorithm which
works in the face of hardware failure and unreliable com-
munication links is the main contribution in this paper. We
provide a functional prototype written in Erlang to show how
this algorithm can be used in a production environment

1. INTRODUCTION

Today, we are seeing more and more services switch to
cloud-based architectures in order to scale with increasing
demand, reduce costs, and improve availability. However,
one of the biggest technical challenges with moving appli-
cations to the cloud is a loss of control. Many cloud-based
services need the ability to control resource consumption for
Quality of Service (QoS) and pricing purposes. For example,
internet service providers need to limit individual download
and upload speeds so they aren’t overselling bandwidth. For
QoS purposes: limiting resource consumption increases over-
all system availability since it ensures that one user cannot
disrupt service for others.

That being said, the problem of controlling resource us-
age in the cloud is a non-trivial one. This is because it is
difficult to achieve without using a centralized server. Large
cloud-based companies such as Amazon seem to be finding
it difficult to find a solution to this problem. For exam-
ple, Amazon’s Simple Storage Service (S3) allows customers
to upload files to the cloud for hosting purposes. However,
they have yet to find a solution for fine-grain control over
user bandwidth[1]. This problem is not unique to Amazon,

other content-delivery networks rely heavily on accurate rate
limting algorithms to price out bandwidth for their clients.

In the first section of this paper, we formally define the
distributed rate limiting (DRL) problem and present several
algorithms for solving it. However, we demonstrate that ex-
isting algorithms have several problems: staleness and reli-
ability on centralized servers.

In the second section, we propose a new approach expand-
ing on existing research for solving the DRL problem. This
section provides an algorithm for distributing a service rate
over a cluster.

Lastly, we look at how the algorithm reacts to common
network problems and server failures.

1.1 Problem Definition

The Distributed Rate Limiting (DRL) problem can be
described as trying to distribute a service rate limit R, ex-
pressed as a number of service requests per time interval t,
over a group of N servers in such a way that the supply Si

given to each server i is dependendant on the job popula-
tion Di at each server. For each timestep t our goal is to
maintain:

N∑
i=1

Si = R

However, ensuring the aggregate sum of supply doesn’t
exceed the service rate is trivial. Maintaining a fair distri-
bution of the service rate over time is the main challenge
when designing a DRL algorithm.

1.2 A Trivial Approach

The easiest approach to the DRL problem is taking the
poorman’s approach. That is, taking a service rate R and
dividing it evenly so supply at each server is equal. Thus,
the distribution would be S1 = S2 = ... = Sn = R/N .

This approach works reasonably well when demand at
each server is approximately equal. However, these con-
ditions are rarely seen in production; more than likely each
server will see varying demand. It is important to note that

servers are not necessarily equal in terms of performance.
A server with more ram and faster processing speed will
process its job queue at a much faster rate.

At Bravenet Media we have implemented this approach in
the past. However, in our old system requests were sched-
uled in a round-robin fashion which ensured that servers
were given a fairshare over the entire job population. The
next problem we encountered was that some servers could
handle more demand than others causing the average num-
ber of processed requests to vary; a quick solution is to create
virtual machines inside more performant servers. Of course,
maintaining multiple virtual machines inside a server was
troublesum and not the ideal solution for our team. More
importantly, the real problem with this approach is that the
DRL problem arises in services which are composed of geo-
graphically distributed sites[2]. Meaning demand can flux-
uate depending on a number of factors, mainly latency.

1.3 Related Work

There have been several existing solutions to the DRL
problem. The authors of Cloud Control with Distributed
Rate Limiting proposed two algorithms for solving it: Flow
Proportional Share (FPS) and Global Random Drop (GRD)[2].
These two algorithms are decentralized and use gossip pro-
tocols for sending updates to other nodes. Both, similar in
design, have nodes periodically broadcasting their average
number of service requests. Once a node has enough infor-
mation on its neighbours it can estimate what its portion of
the service rate should be. However, since limiters estimate
their own supply without agreement from other limiters,
overall demand can momentarily exceed the service rate.
This happens because updates being sent around the clus-
ter are stale and don’t represent the instantaneous demand
at a node. Similarly, Ajil, another DRL algorithm suffers
from the same problem[4]. There is no “hard” limit instead
most DRL algorithms have soft limits allowing demand to
slightly fluxuate over the service rate. The only way to get
around this problem is if supply can be passed around the
cluster instead of being locally estimated. This is the basis
of Generalized Distributed Rate Limiting (GDRL)[3].

GDRL is an analytic framework for the design of stable
DRL algorithms. As mentioend prior, the basis of GDRL is
that it works by passing supply around the cluster instead of
having nodes rely on estimation. Thus, overall demand will
never exceed the service rate making it the ideal framework
for designing our DRL algorithm.

2. ALGORITHM DESIGN

As mentioned in the previous section we will use GDRL
as the base to design our algorithm. However, first we need
to formally define it.

2.1 The GDRL Framework

The goal of GDRL is to allocate supply in such a way
that peformance at each server is uniform. Thus, in GDRL
limiters work towards the fairness postulate:

Fairness postulate: The performance levels at different
servers should be (aproximately) equal.

In order to formalize the fairness postulate we need the
defintion of a performance indicator. Let qi be the perfor-
mance indicator at a server. The performance indicator can
be anything (eg. “spare bandwidth”, “mean response time”).
Thus, the goal of GDRL is to ensure the following invariance
is satisfied:

q1 = q2 = ... = qN .

With the additional constraint:

N∑
i=1

Si = R

2.2 A New Approach

Now we present a modified version of the GDRL algorithm
to solve the problem described in 1.1. For our performance
indicator we will use “fill ratio” which we define as Si/Di.
We want to satisfy the following:

S1

D1
=
S2

D2
= ... =

Sn

Dn
(1)

Satisfying this condition will ensure that every server re-
ceives a fairshare since the service rate is distributed de-
pending on demand at a server. For communication, each
server i will cooperate with its neighbours in a connected
undirected graph.

Let there be N servers to control aggregate service rate R.
The server i has a supply Si that can be adjusted, and this
server can exchange information with the server j if (i, j) is
an edge in the communication graph G = (N,E).

The first step of our algorithm will use the poorman’s
approach. Since we know nothing about the initial state of
our cluster ie. how much demand is at each server; we will
start by evenly dividing up the service rate.

The next step will allow us to achieve convergence (1).
For each neighbour j of i we will take the difference between
performance indicators at i and j and add that number to
Si to set the new supply.

Si ← Si + η
∑

(i,j)∈E

(
Si

Di
− Sj

Dj
) (2)

We use the fraction η as a multiplier to ensure the stability
of the algorithm. The authors of GDRL use η = 1

2d
where d

is the number of neighbours each node has. In our algorithm
we will use d = 2 since using it is recommended in GDRL.
If we didn’t use η the algorithm would never converge since
the values being passed around are too large.

2.3 Implementing the Aglorithm

Since d = 2 each node will have two neighbours. Peri-
odically a node will query each of its neighbours asking for
their fill ratio. Once obtaining a fill ratio it will take the
difference between its ratio and its neighbour and multiply

it by the fraction η. Let this value be δd = η(Si
Di
− Sj

Dj
).

Looking at equation (2) we set the new supply at i with this
value plus the old supply at i:

Si ← Si + δd

However, since were adding supply δd into Si we can’t
create additional supply in our system since our original
constraint would be broken. To fix this we subtract the
additional supply from i’s neighbour j. Thus, on the other
end:

Sj ← Sj − δd

Repeating the above two steps for each node over time
will achieve convergence.

For those interesteed, we have a prototype written in Er-
lang available online:

https : //github.com/rramsden/experiments

3. FAULT TOLERANCE

The above algorithm is unique in the fact that it can
survive hardware and link failures. In this section we will
also discuss procedures for adding and removing nodes from
the cluster.

3.1 Netsplits

A netsplit occurs when a link between servers is severed.
A link can break for many reasons: node failure, routing
issues, etc. When a netsplit does occur it segments a cluster
into multiple clusters. Since our algorithm is decentralized
it doesn’t depend on a single master node. Nodes can keep
working with their neighbours. If the netsplit seperates a
node from its neighbour we take no action. We do this be-
cause servers will eventually rejoin the cluster since network
issues will most likely eventually reslove themselves.

3.2 Node Failures

If a node goes offline for whatever reason: power failure,
hardware failure, etc. a node will have a best buddy node
which will inherit the failed nodes supply. When the node
comes back online it will be passed supply based on the
demand its seeing.

3.3 Adding and Removing Nodes

Adding new nodes can be handled by letting a node with
no supply enter the cluster. The node will then pick any two
random nodes to be its neighbours. From there supply will
be allocated based on the demand the node is seeing.

Removing a node is the same in the case of a node failure.
When we remove a node from the cluster the best buddy node
will inherit its supply.

4. CONCLUSION

We have created a working prototype for this algorithm
and DRL with performance indicators has been proven to
achieve convergence in GDRL[3]. However, there is still
much room for improvement. One of the main research areas
of DRL algorithms is figuring out the fastest way to achieve
convergence. Given more time we would of liked to provide
benchmark data on how fast our algorithm converges. Other
areas we would like to explore is mimicking node failures in
our current prototype. The current prototype only supports
adding and removing nodes but cannot mimick netsplits and
node failures.

5. REFERENCES
[1] Panos Ipeirotis, The Google attack: How I attacked

myself using Google Spreadsheets and I ramped up a
1000bandwidthbill.
http://www.behind-the-enemy-
lines.com/2012/04/google-attack-how-i-self-
attacked.html

[2] Barath Raghavan, Cloud Control with Distributed Rate
Limiting.
http://www.cs.ucla.edu/classes/cs217/SIG07Award.pdf

[3] Rade Stanojevic, Generalized Distributed Rate Limiting.
http://www.hamilton.ie/person/rade/IWQoS2009.pdf

[4] Hussam Abu-Libdeh, Ajil: Distributed Rate-limiting for
Multicast Networks.
http://www.cs.cornell.edu/projects/quicksilver/publicpdfs/ajil.pdf

